Automated poisoning attacks and defenses in malware detection systems: An adversarial machine learning approach
نویسندگان
چکیده
The evolution of mobile malware poses a serious threat to smartphone security. Today, sophisticated attackers can adapt by maximally sabotaging machine-learning classifiers via polluting training data, rendering most recent machine learning-based malware detection tools (such as Drebin and DroidAPIMiner) ineffective. In this paper, we explore the feasibility of constructing crafted malware samples; examine how machine-learning classifiers can be misled under three different threat models; then conclude that injecting carefully crafted data into training data can significantly reduce detection accuracy. To tackle the problem, we propose KuafuDet, a two-phase learning enhancing approach that learns mobile malware by adversarial detection. KuafuDet includes an offline training phase that selects and extracts features from the training set, and an online detection phase that utilizes the classifier trained by the first phase. To further address the adversarial environment, these two phases are intertwined through a self-adaptive learning scheme, wherein an automated camouflage detector is introduced to filter the suspicious false negatives and feed them back into the training phase. We finally show KuafuDet significantly reduces false negatives and boosts the detection accuracy by at least 15%. Experiments on more than 250,000 mobile applications demonstrate that KuafuDet is scalable and can be highly effective as a standalone system.
منابع مشابه
Detection of Adversarial Training Examples in Poisoning Attacks through Anomaly Detection
Machine learning has become an important component for many systems and applications including computer vision, spam filtering, malware and network intrusion detection, among others. Despite the capabilities of machine learning algorithms to extract valuable information from data and produce accurate predictions, it has been shown that these algorithms are vulnerable to attacks. Data poisoning ...
متن کاملAttack and Defense of Dynamic Analysis-Based, Adversarial Neural Malware Classification Models
Recently researchers have proposed using deep learning-based systems for malware detection. Unfortunately, all deep learning classification systems are vulnerable to adversarial attacks where miscreants can avoid detection by the classification algorithm with very few perturbations of the input data. Previous work has studied adversarial attacks against static analysisbased malware classifiers ...
متن کاملGenerating Adversarial Malware Examples for Black-Box Attacks Based on GAN
Machine learning has been used to detect new malware in recent years, while malware authors have strong motivation to attack such algorithms.Malware authors usually have no access to the detailed structures and parameters of the machine learning models used by malware detection systems, and therefore they can only perform black-box attacks. This paper proposes a generative adversarial network (...
متن کاملEvading Machine Learning Malware Detection
Machine learning is a popular approach to signatureless malware detection because it can generalize to never-beforeseen malware families and polymorphic strains. This has resulted in its practical use for either primary detection engines or supplementary heuristic detections by anti-malware vendors. Recent work in adversarial machine learning has shown that models are susceptible to gradient-ba...
متن کاملMan vs. Machine: Practical Adversarial Detection of Malicious Crowdsourcing Workers
Recent work in security and systems has embraced the use of machine learning (ML) techniques for identifying misbehavior, e.g. email spam and fake (Sybil) users in social networks. However, ML models are typically derived from fixed datasets, and must be periodically retrained. In adversarial environments, attackers can adapt by modifying their behavior or even sabotaging ML models by polluting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Security
دوره 73 شماره
صفحات -
تاریخ انتشار 2018